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In this paper we derive the asymptotic (viz. high signal-to-noise ratio) distribution of the null spectrum of 
the well-known Multiple Signal Classification (MUSIC) in its computational Time-Reversal (TR) form. The 
analysis builds upon classical results on the first-order perturbation of the singular value decomposition. 
These allow to obtain a simple characterization of the moments (up to the second order) of the spectrum 
and thus provide also a consistent form of the asymptotic “noisiness” measure in the TR case. The present 
study refers to a single-frequency case in a multistatic co-located scenario. The proposed analysis also 
enables a simple comparison of TR-MUSIC null-spectrum properties when linear and non linear (i.e. with 
mutual interaction effects) scattering models are assumed. Finally, a numerical analysis is provided to 
confirm the theoretical findings.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation and related works

Time-Reversal (TR) refers to all those methods exploiting the 
invariance of the wave equation (in stationary and lossless me-
dia) through time reversing with the intent of focusing on an 
emitting source or a scattering object. This is obtained by re-
transmitting a time-reversed replica of the radiated/scattered field 
measured by an array of sensors and can be achieved physically 
[1] or in a computational fashion [2]. In the latter case (the so-
called computational TR), the time-reversing procedure consists in 
back-propagating, by numerical means, the received data by using 
a known Green’s function matched to the propagation medium. 
Since the representative Green function depends on the scattering 
object position, an image can be obtained by varying the probed 
scatterer location (the latter procedure is typically referred to as 
“imaging”).

Therefore computational TR provides a useful tool to enable tar-
get detection/localization and represents the building rationale for 
imaging procedures in many applications, such as radar imaging 
[3], subsurface prospecting [4], through-the-wall imaging [5] and 
microwave imaging for early breast cancer detection [6–9].

The cornerstone of TR-imaging is represented by the so-called 
Multistatic Data Matrix (MDM), which collects the scattered field 
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due to each Transmit–Receive (Tx–Rx) pair. Two popular methods 
for TR-imaging are represented by the decomposition of TR oper-
ator (DORT) and the TR Multiple Signal Classification (TR-MUSIC). 
More specifically, DORT imaging exploits the MDM spectrum by 
back-propagating separately the eigenvectors constituting the sig-
nal subspace. By doing so, selective focus on each (well-resolved) 
scatterer can be obtained [10].

On the other hand, TR-MUSIC is based on a complementary 
viewpoint with respect to DORT. Indeed, TR-MUSIC relies on the 
noise subspace, also referred to as orthogonal-subspace,1 for the 
evaluation of the imaging function. The latter rationale leads to 
satisfactory performance as long as the signal subspace dimension 
does not occupy the entire data space dimension.

TR-MUSIC was first developed for a linear scattering model 
(that is, a Born Approximated (BA) model) [11]. Later, its successful 
application was also demonstrated for multiple scattering scenar-
ios (i.e. in the presence of mutual interaction effects among the 
scatterers) [12]. Hence, TR MUSIC became very popular mainly 
due to: (i) algorithmic efficiency; (ii) no need for approximate 
scattering models; and (iii) finer resolution than the diffraction 
limits (especially for scenarios with few scatterers). Differently, for 
large number of scatterers (i.e. exceeding the Degrees Of Freedom 
(DOFs) associated to the corresponding spatial region), it has been 
shown that TR-MUSIC resolution ability deteriorates [13]. Recently, 
TR-MUSIC framework has been expanded to consider extended 
scatterers as well in [14].

1 The term “orthogonal subspace” is commonly adopted to underline that the 
noise subspace is orthogonal to the signal subspace.
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It is worth remarking that a huge literature on the performance 
analysis of MUSIC for Direction-Of-Arrival (DOA) estimation ex-
ists [15]. The development of MUSIC algorithm dates back to the 
pioneering work in [16]. A first performance study in terms of 
resolution was provided by [17] for a simple scenario, while a de-
tailed analysis of MUSIC Mean Squared Error (MSE) can be found 
in the seminal works [18–21]. Theoretical performance analysis 
was later extended to array modeling errors both in terms of MSE 
(through a first-order perturbation approach) [22] and resolution 
[23]. The MSE/bias analysis in the presence of modeling errors was 
then obtained with the use of a second-order subspace perturba-
tion approach in [24], while the resolution capability of MUSIC was 
studied under the same setup in [25]. Finally, a MSE/bias analysis, 
conditioned on the resolution event, was introduced in the recent 
work [26].

We underline that the aforementioned results do not have a 
direct application to TR-MUSIC. Indeed, in TR framework scat-
terers/sources are typically assumed unknown deterministic and 
more importantly a single snapshot is used, whereas MUSIC results 
for DOA refer to multiple snapshots and are often developed un-
der different asymptotic (i.e., a very large number of snapshots) 
conditions. Additionally, up to authors’ knowledge, no corresponding 
theoretical studies have been proposed in the literature for TR-MUSIC. 
The sole exception is represented by the works [27,28], providing 
the asymptotic localization MSE in the case point-like scatterers 
and thus tackling performance analysis of TR-MUSIC from a theo-
retical standpoint.

Yet, sub-optimal estimators were presented in [29,30] and com-
pared in terms of localization performance based on Maximum-
Likelihood Estimator (MLE) or tools from composite hypothesis 
testing, both for BA and Foldy-Lax (FL) (non-linear) models. The 
latter work employed however only simulation results for com-
parison. Differently, a theoretical performance study, based on the 
Cramér-Rao Lower Bound (CRLB), was presented in [31], consider-
ing both scattering models. Remarkably, the complementary task of 
estimating scattering potentials via a non-iterative (approximate) 
formula is addressed in [12] for generic location-only estimators.

1.2. Summary of the main contributions

In what follows, we summarize the main contributions of the 
present work:

• In this paper we are concerned with the performance of TR-
MUSIC in the case of point-like scatterers with additive noise 
matrix corrupting data. To this end, we provide a performance 
analysis of TR-MUSIC null-spectrum in terms of its distribu-
tion. A co-located multistatic (narrowband) setup with either 
BA or FL scattering is considered in this paper.2 The presented 
result is achieved via a first-order perturbation of Singular 
Value Decomposition (SVD). Then, the result holds asymptoti-
cally (viz. in the high Signal-to-Noise Ratio (SNR) regime).

• Our findings are complementary to those obtained in DOA lit-
erature for classic MUSIC [32] and can be used to highlight 
TR-MUSIC null-spectrum dependence on the measurement and 
scatterers configurations. In particular, the exact asymptotic 
distribution of the null spectrum is provided in this paper. 
Such result allows to obtain consistent estimates of both the 
mean and the variance of the null-spectrum, as well as to 
draw important considerations on the Normalized Standard 
Deviation (NSD), the latter being a measure of the noisiness of 
the spectrum. The aforementioned results are further exploited 

2 It is worth noticing that the proposed analysis hold for any general scattering 
(matrix) model whose functional map can be described in a deterministic fashion.
Fig. 1. System model for the considered co-located multistatic setup.

to provide a comparison of the asymptotic null-spectrum at-
tained under both BA and FL models.

• Finally a few numerical examples, concerning simple scat-
tering setups, are presented in order to validate the de-
rived results. More specifically, we consider TR-MUSIC single-
frequency space-space formulation for localizing scalar scatter-
ers in a 2-D scenario.

1.3. Paper organization and manuscript notation

The remainder of the manuscript is organized as follows: Sec. 2
describes the system model and reviews some classic results on 
SVD perturbation analysis. Sec. 3 presents the theoretical charac-
terization of null-spectrum of TR-MUSIC algorithm, whereas these 
results are validated in Sec. 4 via simulations. Then, concluding 
remarks and further developments are reported in Sec. 5. Finally, 
technical proofs are deferred to the Appendix.

Notation – Lower-case (resp. Upper-case) bold letters denote 
column vectors (resp. matrices), with an (resp. an,m) being the 
nth (resp. the (n, m)th) element of a (resp. A); E{·}, var{·}, (·)T , 
(·)†, Tr [·], vec(·), (·)− , � (·), δ(·), ‖·‖F and ‖·‖ denote expectation, 
variance, transpose, Hermitian, matrix trace, vectorization, pseudo-
inverse, real part, Kronecker delta, Frobenius norm and �2 norm 
operators, respectively; 0N×M (resp. I N ) denotes the N × M null 
(resp. identity) matrix; 0N (resp. 1N ) denotes the null (resp. ones) 
vector of length N; diag(a) denotes the diagonal matrix obtained 
from the vector a; x1:M denotes the vector obtained by concate-
nation as x1:M �

[
xT

1 · · · xT
M

]T
; �x denotes the covariance ma-

trix of the complex-valued random vector x; NC(μ, �) denotes a 
proper complex Gaussian pdf with mean vector μ and covariance 
matrix �; Cχ2

N denotes a complex chi-square distribution with N
(complex) DOFs; finally the symbol ∼ means “distributed as”.

2. System model

2.1. Signal model

The signal model is described hereinafter. We consider local-
ization of point-like scatterers with a multistatic setup, as illus-
trated in Fig. 1. We assume that M point scatterers3 are located at 
unknown positions {xk}M

k=1 in Rp (where p represents the num-
ber of coordinates) with unknown scattering coefficients {τk}M

k=1
in C. The Tx (resp. Rx) array consists of N isotropic point ele-
ments (resp. receivers) located at {ri}N

i=1 in Rp . The illuminators 
first send signals according to the scenario under consideration 
(i.e. in a known homogeneous background with wavenumber κ ) 
and the transducer array records the received signals. The (single-
frequency) measurement model is then [29]:

3 The number of scatterers M is assumed known, as customary in array-
processing literature [15].
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K n = K (x1:M ,τ ) + W (1)

= G(x1:M) M(x1:M ,τ ) G(x1:M)T + W (2)

where K (x1:M , τ ) ∈ C
N×N and K n ∈ C

N×N denote the noise-
free multistatic data matrix (MDM) in frequency-domain and the 
measured MDM, respectively. In Eq. (2), the (i, j)th element of 
the MDM corresponds to the scattered field detected at the ith 
transceiver in receive mode due to the unit excitation at the 
jth transceiver in transmit mode. Furthermore, W ∈ C

N×N is a 
noise matrix such that vec(W ) ∼ NC(0N2 , σ 2

w I N2 ). Additionally, 
we have denoted: (i) the vector of scattering coefficients as τ �[
τ1 · · · τM

]T ∈ C
M×1; (ii) the Tx-Rx array matrix as G(x1:M) ∈

C
N×M . The latter is defined explicitly as:

G(x1:M) �
[

g(x1) g(x2) · · · g(xM)
]
. (3)

In Eq. (3), g(x) ∈ C
N×1 denotes the Tx-Rx Green’s function vector 

as a function of the arbitrary location x ∈R
p , that is:

g(x) �
[
G(r1, x) G(r2, x) · · · G(rN , x)

]T
. (4)

It is worth noticing that the functional dependence of Eq. (4)
is only due to G(x′, x), which denotes the relevant (scalar) back-
ground Green function [11]. Finally, in Eq. (2) the scattering matrix 
M(x1:M , τ ) ∈C

M×M for BA model [11] is defined as

M(x1:M ,τ ) � T (τ ) = diag(τ ), (5)

while in the case of FL model we have [31]

M(x1:M ,τ ) �
[

T −1(τ ) − S(x1:M)
]−1

, (6)

where the (m, n)th element of S(x1:M) is defined as follows:

sm,n(x1:M) �
{
G(xm, xn) m �= n

0 m = n
. (7)

Our asymptotic analysis of TR-MUSIC null-spectrum distribution is 
very general and will account for both models in Eqs. (5) and (6).

Finally, to quantify the degree of mutual interaction (analo-
gously to [12]), we employ the index

η � ‖K f(x1:M ,τ ) − K b(x1:M ,τ )‖F

‖K b(x1:M ,τ )‖F
, (8)

where K b(x1:M , τ ) and K f(x1:M , τ ) indicate the MDMs given in 
Eqs. (5) and (6), respectively. The aforementioned index will be 
employed in Sec. 4 to quantify the level of multiple scattering ex-
perienced in the considered numerical setups.

2.2. TR-MUSIC spectrum

TR-MUSIC is based on the evaluation of the spatial spectrum
(also known as null-spectrum in DOA literature) [11]

P(x, Ũ n) �
∥∥∥Ũ

†
n ḡ(x)

∥∥∥2 = g(x)† P̃ n g(x)

g(x)† g(x)
, (9)

where Ũ n ∈ C
N×(N−M) is the matrix of left singular vectors of 

K n corresponding to the noise subspace, ḡ(x) � g(x)/ ‖g(x)‖ is 
the unit-norm Green vector function and P̃n � (Ũ nŨ

†
n) (i.e. the 

“noisy” projector into the left orthogonal subspace). It is worth 
noticing that TR-MUSIC in co-located case can be employed as long 
as the number of scatterers is lower than the number of Tx/Rx el-
ements, i.e. M < N . It is apparent that Eq. (9) equals zero when x
equals the true scatterers locations {xk}M

k=1 in the noise-free case 
(i.e. when Ũ n = U n , the latter representing the matrix of eigenvec-
tors corresponding to the left noise subspace of K (x1:M , τ )). For 
this reason, generally the M largest local maxima of P(x, ̃U n)−1

are then chosen as the estimated positions {x̂k}M [11].
k=1
2.3. SVD perturbation review

In what follows we provide preliminaries on first-order SVD 
perturbation, based on [33,34]. First, we consider a matrix A ∈
C

R×T with rank equal to δ < min{R, T } (i.e. a rank deficient ma-
trix). It can be easily shown that its SVD A = U � V † can be 
rewritten as:

A = (
U s U n

)(
�s 0

δ×δ̌

0δ̄×δ 0
δ̄×δ̌

)(
V †

s

V †
n

)
, (10)

where δ̄ � (R − δ) and δ̌ � (T − δ), respectively. Additionally, U s ∈
C

R×δ and V s ∈ C
T ×δ (resp. U n ∈ C

R×δ̄ and V n ∈ C
T ×δ̌) have been 

used to denote the left and right unitary matrices of the signal 
subspace (resp. orthogonal subspace) in Eq. (10). We then con-
sider a perturbed matrix Ã = (A + N), where N represents the 
perturbing term. Similarly as in Eq. (10), the SVD of Ã = Ũ �̃ Ṽ

†
is 

rewritten as

Ã = (
Ũ s Ũ n

)(
�̃s 0

δ×δ̌

0δ̄×δ �̃n

)(
Ṽ

†
s

Ṽ
†
n

)
(11)

which highlights the effect of N on the spectral representation 
of Ã. Indeed, differently from Eq. (10), Ã may be full-rank in gen-
eral. Additionally, Eq. (11) underlines the change of the left and 
right principal directions due to N . This can be stressed as:

Ũ s = U s + �U s, Ũ n = U n + �U n, (12)

Ṽ s = V s + �V s, Ṽ n = V n + �V n, (13)

where �(·) terms in Eqs. (12) and (13) are in general compli-
cated functions of N . However, when N has a “small magnitude” 
(its meaning will be clarified hereinafter) compared to A, a first-
order perturbation (i.e. 	(·) are approximated as linear functions 
of N ), originally obtained in [35] and successively employed in 
DOA estimation in [20,33], will be accurate. Intuitively, a small per-
turbation is typically observed in the high Signal-to-Noise Ratio 
(SNR) regime, when N corresponds to a noise or disturbance ma-
trix. In view of these considerations, next lemma will be used as 
the workhorse for our analysis.

Lemma. The perturbed left orthogonal subspace Ũ n (resp. right orthog-
onal subspace Ṽ n) is spanned by U n + U s B (resp. V n + V s B̄) and 
the perturbed left signal subspace Ũ s (resp. right signal subspace Ṽ s) 
is spanned by U s + U nC (resp. V s + V n C̄ ), where matrices B and C
(resp. B̄ and C̄ ) have norms of the order of that of N . The adopted norm 
is required to verify the sub-multiplicative property (e.g. the Frobenius or 
�2 norms).

The perturbations �U n and �V n have the following explicit 
expressions, valid up to the first order:

�U n = U s B = −U s �−1
s V †

s N † U n; (14)

�V n = V s B̄ = −V s �−1
s U †

s N V n. (15)

Correspondingly, C = −B† and C̄ = −B̄
†

hold, thus giving:

�U s = U n C = P R,n N V s �−1
s ; (16)

�V s = V n C̄ = P T ,n N † U s �−1
s . (17)

In Eqs. (16) and (17) we have defined P R,n � U nU †
n and

P T ,n � V n V †
n , respectively. Moreover, we remark that in obtaining 

Eqs. (14)–(17), “in-space” perturbation terms (e.g. the contribution 
of �U n due to U n) are not taken into account, though they have 
been shown to be linear with N (i.e. not negligible at first-order). 
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The reason is that these terms do not affect performance analysis 
of TR-MUSIC null-spectrum when evaluated at scatterers positions 
xk , k ∈ {1, . . . M}.

3. Null-spectrum analysis

3.1. General results

In this section we develop our high-SNR analysis of TR-MUSIC 
null-spectrum. To this end, we will exploit the results reviewed in 
Sec. 2.3 to the model introduced in Sec. 2.1 by adopting the corre-
spondences (i) A → K (x1:M , τ ), (ii) N → W and (iii) Ã → K n , 
respectively. First, we observe that the null-spectrum evaluated 
at scatterers locations P(xk, ̃U n), k ∈ {1, . . . , M} in Eq. (9) can be 
rewritten as

P(xk, Ũ n) =
∥∥∥(U n + �U n)

† ḡ(xk)

∥∥∥2
(18)

= ∥∥ξk

∥∥2 (19)

exploiting the orthogonality property U †
n ḡ(xk) = 0(N−M) and the 

definition ξk � �U †
n ḡ(xk). Therefore, in order to draw-out a sta-

tistical characterization of P(xk, ̃U n), we concentrate on the pdf of 
the random vector ξk . Clearly, finding the exact distribution of ξk
is a difficult task, as �U n is in general a complicated function on 
the unknown perturbing matrix W .

However, �U n assumes a (tractable) closed form when a first-
order approximation is considered (see Eq. (14)). This approxima-
tion holds tightly in the case of high SNR, as the matrix W will 
be statistically “small” (for a detailed discussion of this assumption 
see [35]) in comparison to noise-free MDM K (x1:M , τ ). Therefore, 
ξk is (approximately) expressed in terms of W (exploiting the re-
sult in Eq. (14)) as:

ξk ≈ −U †
n W V s �−1

s U †
s ḡ(xk) . (20)

Thus the vector ξk is (approximately4) a linear function of the 
noise matrix W , assumed in this manuscript statistically dis-
tributed according to a (complex) Gaussian distribution. Therefore, 
ξk will be Gaussian distributed too. Also, it is easy to show that ξ k
has a mean vector

E
{
ξk

} = 0N−M , (21)

since E {W } = 0N×N . Differently, the closed-form of covariance �k
is given by (since the mean is null)

�k � E

{
ξk ξ

†
k

}
= σ 2

w ‖tk‖2 I N−M , (22)

where tk � V s �−1
s U †

s ḡ(xk) ∈C
N×1 is a deterministic vector, which 

also admits the more intuitive form:

tk = K −(x1:M ,τ ) ḡ(xk) , (23)

since we have exploited K −(x1:M , τ ) = V s �−1
s U †

s ∈ C
N×N [36]. 

Finally, it is shown that the pseudo-covariance �k = E 
{
ξk ξ T

k

}
=

0(N−M)×(N−M); therefore ξk is a circular complex Gaussian vector. 
The proof of both the aforementioned results is contained in the 
Appendix.

Therefore, in summary ξk is distributed as:

ξk ∼ NC

(
0N−M ,‖tk‖2 σ 2

w I N−M

)
. (24)

4 In the following of the manuscript we will omit the terms “approximated” and 
“approximately” implicitly referring to a high-SNR regime.
Clearly, since ξk is a complex Gaussian with zero mean and di-
agonal covariance, its energy normalized by the variance of the 
generic component is distributed as follows:

ψk �
∥∥ξk

∥∥2

σ 2
w ‖tk‖2

∼ Cχ2
N−M . (25)

In other terms, ψk is complex chi-square distributed with N − M
(complex) DOFs and with explicit pdf given by:

pψk (ψ) = ψ(N−M−1)

(N − M − 1) ! exp(−ψ), ψ ≥ 0 . (26)

It is worth noticing that the DOFs of the obtained chi-square coin-
cide with those available for TR-MUSIC localization properties. On 
the basis of the aforementioned result, it readily follows that

E

{∥∥ξk

∥∥2
}

= σ 2
w ‖tk‖2

E
{
ψk

}
(27)

= σ 2
w ‖tk‖2 (N − M) , (28)

and

var
{∥∥ξk

∥∥2
}

= σ 4
w ‖tk‖4 var

{
ψk

}
(29)

= σ 4
w ‖tk‖4 (N − M) . (30)

Therefore, we have obtained the mean and the variance of the 
pseudo-spectrum P(xk, ̃U n) = ∥∥ξk

∥∥2. Also, by considering the Nor-
malized Standard Deviation (NSD) [32,37] of the null-spectrum, we 
obtain:

NSDk �

√
var

{
P(xk, Ũ n)

}
E

{
P(xk, Ũ n)

} = 1√
N − M

. (31)

It is apparent that the NSD does not depend (at high SNR) on 
the scatterers configuration and coefficients, as well as the noise 
power, but only on the (complex) DOFs, being equal to N − M . 
Therefore, the NSD becomes (asymptotically) very small only when 
the number of scatterers is few compared to the elements of the 
array.

First Remark: we recall that in [17] Kaveh and Barabell analyzed 
the performance of MUSIC for DOA estimation, focusing on the res-
olution property in the case of two closely-spaced emitters. In the 
aforementioned work the prerequisite for the proposed analysis to 
hold is that the standard deviation of P(xk, ̃U n) should be small 
compared to E 

{
P(xk, Ũ n)

}
, k ∈ {1, 2}, so that the null-spectrum 

mean reflects the value of the random variable P(xk, ̃U n). Clearly, 
this assumption corresponds to:

NSDk  1 k ∈ {1,2}. (32)

Therefore, aiming at fostering a similar analysis to [17] for the TR 
setup, we will need that (32) holds true. This implies that two 
conditions need to be met. First, a sufficiently high SNR should be 
experienced in order for the proposed approximation to hold (re-
call that this is needed so that the first-order SVD perturbation is 
accurate). Secondly, when the SNR is sufficiently high, it is appar-
ent from (31) that a further SNR increase does not improve the 
stability of the spectrum, but only an increase of the array aper-
ture N does. Indeed the (asymptotic) NSD, being a measure of 
the noisiness of the null spectrum, is not dependent on the SNR. 
Remarkably, the aforementioned conditions have a strong analogy 
with the DOA case, where the asymptotic regime is achieved with 
a sufficient number of observed samples and a good spectrum 
(asymptotic) stability can be only obtained with increased (pas-
sive) receive array aperture [32].

Second Remark: in case the evaluated position of TR-MUSIC null-
spectrum x does not coincide with one of the scatterers positions 



54 D. Ciuonzo, P. Salvo Rossi / Digital Signal Processing 69 (2017) 50–58
Fig. 2. Considered 2-D measurement/scatterers geometry; red filled “◦” markers 
correspond to a usual setup, while magenta “◦” markers to a sub-wavelength ex-
periment. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

xk , k ∈ {1, . . . , M}, it is apparent that the first term in the right-
hand side of Eq. (18) is not null (i.e. U †

n ḡ(x) �= 0N−M ). Nonetheless, 
we observe that the preceding analysis can be still applied. Indeed, 
it can be readily shown that P(x, ̃U n) = ‖ξ(x)‖2, where (in approx-
imated sense5):

ξ(x) ∼ NC

(
U †

n ḡ(x), σ 2
w ‖t(x)‖2 I N−M

)
, (33)

where we have similarly defined t(x) � K −(x1:M , τ ) ḡ(x).
The aforementioned two remarks are deemed to be useful in 

order to provide a complete resolution threshold analysis, similarly 
to that developed for studying resolution capabilities of MUSIC in 
DOA estimation [17,37]. Indeed, with reference to TR applications, 
a similar rigorous analysis seems to be lacking in the literature 
at the present moment (up to the authors knowledge), except for 
some special setups [38]. The present objective falls however out-
side the scope of this manuscript and will be object of future 
studies.

3.2. BA vs. FL scattering models

Hereinafter we will compare the obtained theoretical results of 
TR-MUSIC null-spectrum with BA and FL models,6 in order to in-
vestigate dependence of spectrum stability on a particular scatter-
ing model. First, we consider the ratio of the means (cf. Eq. (28))

E

{∥∥ξk,f

∥∥2
}

E

{∥∥ξk,b

∥∥2
} =

∥∥K −
f (x1:M ,τ ) g(xk)

∥∥2∥∥K −
b (x1:M ,τ ) g(xk)

∥∥2
� ςk, (34)

where the subscript “f” (resp. “b”) refers to the corresponding 
quantity under FL (resp. BA) model. Similarly, the ratio among the 
variances is given by:

var
{∥∥ξk,f

∥∥2
}

var
{∥∥ξk,b

∥∥2
} = ς2

k . (35)

Therefore the coefficient ςk determines both the ratio between the 
means and the variances. Interestingly, it is worth noticing that 

5 We recall that, as explained in Sec. 2.3, we have ignored the linear “in-space” 
perturbation terms in the first-order SVD expansion, as they do not affect perfor-
mance when x = xk , k ∈ K. However, in the case the considered position x �= xk , 
k ∈ K, they are not exactly null and their contribution to asymptotic analysis should 
be validated. However, the present analysis is outside the scope of the present 
manuscript.

6 Hereinafter, for simplicity, we will consider the expressions obtained holding 
with equality assuming we are in a high-SNR regime.
Fig. 3. TR-MUSIC null-spectrum in usual setup: Mean vs. SNR; theoretical (obtained 
via Eq. (28), in solid lines) vs. simulated (MC-based) performance.

the aforementioned term also dictates the relative performance 
between the MSE performance under the two scattering models. 
Indeed, ςk also coincides with the ratio of the traces of the MSE 
matrices associated to FL and BA models, as shown in [28]. Also, 
after some manipulations, we can express the aforementioned co-
efficient as [28]:

ςk =
∑M

m=1 λ−1
f,m

∥∥∥u†
s,f,m g(xk)

∥∥∥2

∑M
m=1 λ−1

b,m

∥∥∥u†
s,b,m g(xk)

∥∥∥2
, (36)

where K b(x1:M , τ ) = (U s,b�s,b V †
s,b) (resp. K f(x1:M , τ ) =

(U s,f�s,f V †
s,f)) is the SVD of MDM with BA (resp. FL) FL model. 

Also, in Eq. (36) we denoted λb,m and us,b,m (resp. λf,m and us,f,m) 
as the mth eigenvalue of the TR operator K †

b K b (resp. K †
f K f) [11]

and the mth column of U s,b (resp. U s,f), respectively.
However, by looking at the NSD obtained in Eq. (31), it is appar-

ent that the latter measure is independent on the specific scattering 
model being considered. Therefore, it can be concluded that the 
stability of TR-MUSIC null-spectrum is independent on the specific 
scattering model being considered.

4. Numerical results

This section is devoted to confirm theoretical results of Sec. 3
via simulated results. Hereinafter we will restrict our atten-
tion to 2-D localization problems in a homogeneous background. 
In the latter case the relevant Green function is G(x′, x) =
H (1)

0

(
κ

∥∥x′ − x
∥∥)

(we neglect the irrelevant constant scaling factor 
j
4 ), with H (1)

n (·) and κ = 2π
λ

denoting the nth order Hankel func-
tion of the first kind and the wavenumber (λ is the wavelength), 
respectively.

Also, we define SNR � ‖K (x1:M ,τ )‖2
F

N2 σ 2
w

and we consider a multi-

static scenario where λ = 1 (thus κ = 2π ) and a λ
2 -spaced Tx/Rx 

array of N = 11 elements is employed, as shown in Fig. 2. For the 
sake of simplicity, our examples refer to M = 2 targets within the 
investigated area. Finally, we will consider both usual (the distance 
between the scatterers is above λ) and sub-wavelength (the dis-
tance between the scatterers is under λ) setups in what follows 
(see Fig. 2).

Usual setup – Null-spectrum analysis: We first assume that the 
targets have coordinates x1 = [ −1 −6

]T and x2 = [ +1 −6
]T
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Fig. 4. TR-MUSIC null-spectrum in usual setup: Variance vs. SNR; theoretical (ob-
tained via Eq. (30), in solid lines) vs. simulated (MC-based) performance.

(i.e. the distance between the scatterers is 2λ) and scattering co-
efficients τ = [

3 4
]T ; in this case we have η = (0.8232). Then, 

we compare the asymptotic expressions of the mean (28), vari-
ance (30), NSD (31) and pdf (25) with the true ones obtained by 
means of Monte Carlo (MC) simulation, obtained through 105 in-
dependent runs. Fig. 3 depicts the null-spectrum mean behavior vs. 
the SNR for the two targets being considered, both for FL and BA 
models. MC-based means are reported in dashed lines while the 
high-SNR theoretical approximations in solid lines. It is apparent 
that, as the SNR increases, the obtained result tightly approxi-
mate the mean expression. A similar conclusion can be drawn in 
Fig. 4 with reference to the trend of the variance vs. SNR. It is 
seen that both approximations can be deemed extremely accu-
rate above the value SNR ≈ 2 dB. Consequently, as shown in Fig. 5, 
Fig. 5. TR-MUSIC null-spectrum in usual setup: NSD vs. SNR; theoretical (obtained 
via Eq. (31), in solid lines) vs. simulated (MC-based) performance.

at the same SNR value the empirical NSD approaches the steady 
state value dictated by Eq. (31), which, for the present case equals 

1√
11−2

≈ 0.33. Finally, in order to verify the convergence in distri-

bution established by Eq. (25), we report in Fig. 6 the histograms of 
ψk for three representative SNR values (i.e., SNR ∈ {−6, −4, −2} dB
for BA scenario and SNR ∈ {−4, −2, 0} dB for FL scenario) in com-
parison to the theoretical pdf given by Eq. (26). It is apparent that 
a similar SNR value as for mean and variance is required to ensure 
convergence to the asymptotic pdf provided.

Sub-wavelength setup – Null-spectrum analysis: Differently, in Figs. 
7–10 we report a setup where we have set x1 = [ −3/8 −6

]T , 
x2 = [ +3/8 −6

]T (see Fig. 2) and τ = [
3 5

]T . This scenario 
constitutes a sub-wavelength experiment, since the distance be-
tween the scatterers is 3 λ. Clearly, in this case η = (1.5706), which 
4
Fig. 6. TR-MUSIC null-spectrum in usual setup: empirical pdf vs. SNR; theoretical (obtained via Eq. (26), in dashed black line) vs. simulated (MC-based) performance.
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Fig. 7. TR-MUSIC null-spectrum in sub-wavelength setup: Mean vs. SNR; theoretical 
(obtained via Eq. (28), in solid lines) vs. simulated (MC-based) performance.

Fig. 8. TR-MUSIC null-spectrum in sub-wavelength setup: Variance vs. SNR; theoret-
ical (obtained via Eq. (30), in solid lines) vs. simulated (MC-based) performance.

Fig. 9. TR-MUSIC null-spectrum in sub-wavelength setup: NSD vs. SNR; theoretical 
(obtained via Eq. (31), in solid lines) vs. simulated (MC-based) performance.

is higher than the corresponding value of the previous experiment, 
thus underlining the significant mutual scattering effect experi-
enced in this case when considering FL model. From inspection 
of Figs. 7 and 8, it is apparent that a similar behavior as in the 
previous experiment can be observed, thus confirming the gen-
eral validity of the obtained expressions of Sec. 3. Clearly, in the 
case of the NSD (cf. Fig. 9), the same value (i.e. NSDk ≈ 0.33) 
as in the previous setup is attained. However, since the scatter-
ers are closer, their relevant signatures (represented by the Green 
vector functions) will be very similar and thus a lower level of 
noise (viz. a higher SNR level) is required for the present analy-
sis to apply. Indeed, the true pdf and the first two-order moments 
approach their asymptotic forms at SNR ≈ 14 dB, see e.g. Fig. 10, 
where the empirical pdf is shown against the theoretical pdf for 
three representative values (i.e. SNR ∈ {−5, 0, 5} dB for BA scenario 
and SNR ∈ {0, 5, 10} dB for FL scenario).

5. Concluding remarks

The present study provided a theoretical analysis of TR-MUSIC 
null-spectrum, focusing on a narrowband co-located multistatic 
setup. To accomplish the aforementioned task, we took advantage 
of a 1st order perturbation of the SVD of the noise-free MDM. 
More specifically, we demonstrated that its asymptotic (high-SNR) 
pdf is a scaled complex chi-square with a number of complex 
DOFs given by the dimension of the orthogonal subspace, that is 
N − M . The aforementioned result was also exploited to show that 
the asymptotic noisiness of the null-spectrum only depends on 
(N − M). This finding holds independently on the peculiar scatter-
ing model being assumed. Finally, theoretical findings were con-
firmed in a 2D localization scenario by simulations.

Future studies will focus on (asymptotic) TR-MUSIC null-
spectrum analysis in more advanced (and/or realistic) setups, such 
as non-colocated ones, where several TR-MUSIC spatial spectrum 
variants were proposed in the latter context [12]. Furthermore, 
wideband data, scatterers with finite extent, and mismatches in 
the array model will be analyzed. Similarly, propagation in random 
(non-homogeneous) media and clutter-dominated environments 
will be investigated as well.

Appendix

In order to demonstrate the result in Eq. (22), we first evaluate 
the covariance of ξk as (since the mean is null)

�k � E

{
ξkξ

†
k

}
= U †

n E

{
W tkt†

k W †
}

U n , (37)

where tk � V s �−1
s U †

s ḡ(xk) ∈ C
N×1 is a deterministic vector. Then, 

we rewrite the expectation within Eq. (22) as follows:

E

{
W tk t†

k W †
}

=
N∑

m=1

N∑
n=1

tk,mt∗
k,n E

{
wm w†

n

}
, (38)

where wn denotes the nth column of W . Similarly, the pseudo-
covariance of ξk can be evaluated as:

�k � E

{
ξkξ

T
k

}
= U †

n E

{
W tktT

k W T
}

U ∗
n , (39)

where the expectation in the above expression is rewritten conve-
niently as:

E

{
W tk tT

k W T
}

=
N∑

m=1

N∑
n=1

tk,mtk,n E

{
wm w T

n

}
. (40)

Since vec(W ) ∼NC(0N2 , σ 2
w I N2 ), the following properties hold:
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Fig. 10. TR-MUSIC null-spectrum in sub-wavelength setup: empirical pdf vs. SNR; theoretical (obtained via Eq. (26), in dashed black line) vs. simulated (MC-based) performance.
E{wn w†
m} = δ(n − m)σ 2

w I N ; (41)

E{wn w T
m} = 0N×N . (42)

The aforementioned properties, when exploited in Eqs. (38) and 
(40), provide:

E

{
W tkt†

k W †
}

= ‖tk‖2 σ 2
w I N ; (43)

E

{
W tk tT

k W T
}

= 0N×N . (44)

Substituting (43) in Eq. (37) leads to the closed-form of covari-
ance �k

�k = U †
n

(
‖tk‖2 σ 2

w I N

)
U n, (45)

= ‖tk‖2 σ 2
w I N−M , (46)

where we in last line we have exploited the fact that U n is a slice
of a unitary matrix (cf. Eq. (10)), that is (U †

n U n) = I N−M . Finally, 
exploiting Eq. (44) into (39) provides �k = 0(N−M)×(N−M) .

References

[1] M. Fink, Time-reversal mirrors, J. Phys. D, Appl. Phys. 26 (9) (1993) 1333.
[2] D. Cassereau, M. Fink, Time-reversal of ultrasonic fields. III. Theory of the 

closed time-reversal cavity, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 
39 (5) (1992) 579–592.

[3] J.W. Odendaal, E. Barnard, C.W.I. Pistorius, Two-dimensional superresolution 
radar imaging using the MUSIC algorithm, IEEE Trans. Antennas Propag. 42 (10) 
(1994) 1386–1391.

[4] G. Micolau, M. Saillard, P. Borderies, DORT method as applied to ultrawideband 
signals for detection of buried objects, IEEE Trans. Geosci. Remote Sens. 41 (8) 
(2003) 1813–1820.

[5] L. Li, W. Zhang, F. Li, A novel autofocusing approach for real-time through-wall 
imaging under unknown wall characteristics, IEEE Trans. Geosci. Remote Sens. 
48 (1) (2010) 423–431.

[6] M.D. Hossain, A.S. Mohan, M.J. Abedin, Beamspace time-reversal microwave 
imaging for breast cancer detection, Antennas Wirel. Propag. Lett. 12 (2013) 
241–244, http://dx.doi.org/10.1109/LAWP.2013.2247018.

[7] A.E. Fouda, F.L. Teixeira, Ultra-wideband microwave imaging of breast cancer 
tumors via Bayesian inverse scattering, J. Appl. Phys. 115 (6) (2014) 064701.
[8] M.D. Hossain, A.S. Mohan, Coherent time reversal microwave imaging for the 
detection and localization of breast tissue malignancies, Radio Sci. 50 (2) 
(2015) 87–98.

[9] T. Yin, F.H. Ali, C.C. Reyes-Aldasoro, A robust and artifact resistant algorithm of 
ultrawideband imaging system for breast cancer detection, IEEE Trans. Biomed. 
Eng. 62 (6) (2015) 1514–1525.

[10] C. Prada, S. Manneville, D. Spoliansky, M. Fink, Decomposition of the time re-
versal operator: detection and selective focusing on two scatterers, J. Acoust. 
Soc. Am. 99 (4) (1996) 2067–2076.

[11] A.J. Devaney, Time reversal imaging of obscured targets from multistatic data, 
IEEE Trans. Antennas Propag. 53 (5) (2005) 1600–1610.

[12] E.A. Marengo, F.K. Gruber, Subspace-based localization and inverse scattering of 
multiply scattering point targets, EURASIP J. Adv. Signal Process. (2007) 1–16.

[13] R. Solimene, A. Dell’Aversano, Some remarks on time-reversal MUSIC for two-
dimensional thin PEC scatterers, IEEE Geosci. Remote Sens. Lett. 11 (6) (2014) 
1163–1167, http://dx.doi.org/10.1109/LGRS.2013.2288516.

[14] E.A. Marengo, F.K. Gruber, F. Simonetti, Time-reversal MUSIC imaging of ex-
tended targets, IEEE Trans. Image Process. 16 (8) (2007) 1967–1984.

[15] H. Krim, M. Viberg, Two decades of array signal processing research: the para-
metric approach, IEEE Signal Process. Mag. 13 (4) (1996) 67–94.

[16] R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE 
Trans. Antennas Propag. 34 (3) (1986) 276–280.

[17] M. Kaveh, A. Barabell, The statistical performance of the MUSIC and the 
minimum-norm algorithms in resolving plane waves in noise, IEEE Trans. 
Acoust. Speech Signal Process. 34 (2) (1986) 331–341.

[18] P. Stoica, A. Nehorai, MUSIC, maximum likelihood, and Cramér-Rao bound, IEEE 
Trans. Acoust. Speech Signal Process. 37 (5) (1989) 720–741.

[19] P. Stoica, A. Nehorai, MUSIC, maximum likelihood, and Cramér-Rao bound: fur-
ther results and comparisons, IEEE Trans. Acoust. Speech Signal Process. 38 (12) 
(1990) 2140–2150.

[20] F. Li, R.J. Vaccaro, Analysis of min-norm and MUSIC with arbitrary array geom-
etry, IEEE Trans. Aerosp. Electron. Syst. 26 (6) (1990) 976–985.

[21] B. Porat, B. Friedlander, Analysis of the asymptotic relative efficiency of the 
MUSIC algorithm, IEEE Trans. Acoust. Speech Signal Process. 36 (4) (1988) 
532–544.

[22] A.L. Swindlehurst, T. Kailath, A performance analysis of subspace-based meth-
ods in the presence of model errors, Part I: the MUSIC algorithm, IEEE Trans. 
Signal Process. 40 (7) (1992) 1758–1774.

[23] B. Friedlander, A sensitivity analysis of the MUSIC algorithm, IEEE Trans. Acoust. 
Speech Signal Process. 38 (10) (1990) 1740–1751.

[24] A. Ferréol, P. Larzabal, M. Viberg, On the asymptotic performance analysis of 
subspace DOA estimation in the presence of modeling errors: case of MUSIC, 
IEEE Trans. Signal Process. 54 (3) (2006) 907–920.

[25] A. Ferréol, P. Larzabal, M. Viberg, On the resolution probability of MUSIC 
in presence of modeling errors, IEEE Trans. Signal Process. 56 (5) (2008) 
1945–1953.

http://refhub.elsevier.com/S1051-2004(17)30125-2/bib46696E6B31393933s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib43617373657265617531393932s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib43617373657265617531393932s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib43617373657265617531393932s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4F64656E6461616C31393934s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4F64656E6461616C31393934s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4F64656E6461616C31393934s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4D69636F6C617532303033s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4D69636F6C617532303033s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4D69636F6C617532303033s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4C6932303130s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4C6932303130s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4C6932303130s1
http://dx.doi.org/10.1109/LAWP.2013.2247018
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib466F7564613230313461s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib466F7564613230313461s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib486F737361696E32303135s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib486F737361696E32303135s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib486F737361696E32303135s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib59696E32303135s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib59696E32303135s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib59696E32303135s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib507261646131393936s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib507261646131393936s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib507261646131393936s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib446576616E657932303035s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib446576616E657932303035s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4D6172656E676F32303037s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4D6172656E676F32303037s1
http://dx.doi.org/10.1109/LGRS.2013.2288516
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4D6172656E676F3230303761s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4D6172656E676F3230303761s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4B72696D31393936s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4B72696D31393936s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib5363686D69647431393836s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib5363686D69647431393836s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4B6176656831393836s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4B6176656831393836s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4B6176656831393836s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib53746F69636131393839s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib53746F69636131393839s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib53746F69636131393930s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib53746F69636131393930s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib53746F69636131393930s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4C6931393930s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4C6931393930s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib506F72617431393838s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib506F72617431393838s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib506F72617431393838s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib5377696E646C65687572737431393932s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib5377696E646C65687572737431393932s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib5377696E646C65687572737431393932s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib46726965646C616E64657231393930s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib46726965646C616E64657231393930s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib46657272656F6C32303036s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib46657272656F6C32303036s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib46657272656F6C32303036s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib46657272656F6C32303038s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib46657272656F6C32303038s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib46657272656F6C32303038s1


58 D. Ciuonzo, P. Salvo Rossi / Digital Signal Processing 69 (2017) 50–58
[26] A. Ferréol, P. Larzabal, M. Viberg, Statistical analysis of the MUSIC algorithm in 
the presence of modeling errors, taking into account the resolution probability, 
IEEE Trans. Signal Process. 58 (8) (2010) 4156–4166.

[27] D. Ciuonzo, G. Romano, R. Solimene, On MSE performance of time-reversal MU-
SIC, in: IEEE 8th Sensor Array and Multichannel Signal Processing Workshop, 
SAM, 2014, pp. 13–16.

[28] D. Ciuonzo, G. Romano, R. Solimene, Performance analysis of time-reversal MU-
SIC, IEEE Trans. Signal Process. 63 (10) (2015) 2650–2662.

[29] G. Shi, A. Nehorai, Maximum likelihood estimation of point scatterers for com-
putational time-reversal imaging, Commun. Inf. Syst. 5 (2) (2005) 227–256.

[30] D. Ciuonzo, On Time-Reversal imaging by statistical testing, IEEE Signal Process. 
Lett. 24 (7) (2017) 1024–1028.

[31] G. Shi, A. Nehorai, Cramér-Rao bound analysis on multiple scattering in mul-
tistatic point-scatterer estimation, IEEE Trans. Signal Process. 55 (6) (2007) 
2840–2850.

[32] J. Choi, I. Song, Asymptotic distribution of the MUSIC null spectrum, IEEE Trans. 
Signal Process. 41 (2) (1993) 985–988.

[33] F. Li, H. Liu, R.J. Vaccaro, Performance analysis for DOA estimation algorithms: 
unification, simplification, and observations, IEEE Trans. Aerosp. Electron. Syst. 
29 (4) (1993) 1170–1184.

[34] Z. Xu, Perturbation analysis for subspace decomposition with applications 
in subspace-based algorithms, IEEE Trans. Signal Process. 50 (11) (2002) 
2820–2830.

[35] G.W. Stewart, Error and perturbation bounds for subspaces associated with cer-
tain eigenvalue problems, SIAM Rev. 15 (4) (1973) 727–764.

[36] D.S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas, Princeton 
University Press, 2009.

[37] H.B. Lee, M.S. Wengrovitz, Statistical characterization of the MUSIC null spec-
trum, IEEE Trans. Signal Process. 39 (6) (1991) 1333–1347.

[38] M. Davy, J.-G. Minonzio, J. de Rosny, C. Prada, M. Fink, Influence of noise on 
subwavelength imaging of two close scatterers using time reversal method: 
theory and experiments, Prog. Electromagn. Res. 98 (2009) 333–358.

Domenico Ciuonzo was born in Aversa, Italy, on June 29, 1985. He 
received the B.Sc. and M.Sc. (summa cum laude) degrees in computer 
engineering and the Ph.D. degree from the Second University of Naples, 
Aversa, Italy, in 2007, 2009, and 2013, respectively.

In 2011, he was involved in the Visiting Researcher Programme of 
NATO CMRE, La Spezia, Italy. In 2012, he was a Visiting Scholar with 
the ECE Department, University of Connecticut, Storrs, CT, USA. In 2015 
and 2016, he held visiting appointments at the Department of Electron-
ics and Telecommunications, Norwegian University of Science and Tech-
nology, Trondheim, Norway. From 2014 to 2016, he was a Post-Doctoral 
Researcher with DIETI, University of Naples, Federico II, Italy. From 2017, 
he is a Researcher at NM2 s.r.l., Naples, Italy.
His reviewing activity was recognized by the IEEE Communications 
Letters and the IEEE Transactions on Communications, which nominated 
him Exemplary Reviewer, in 2013 and 2014, respectively. Since 2016, he 
is an IEEE Senior Member. Since 2014, he has served as Associate Edi-
tor for different journals of IEEE, IET and Inderscience. Additionally, from 
2017, he serves as Technical (Area) Editor for the IEEE Transactions on 
Aerospace and Electronic Systems.

His research interests fall within the areas of data fusion, statistical 
signal processing, machine learning and wireless sensor networks.

Pierluigi Salvo Rossi was born in Naples, Italy, on April 26, 1977. He 
received the “Laurea” degree in telecommunications engineering (summa 
cum laude) and the Ph.D. degree in computer engineering, in 2002 and 
2005, respectively, both from the University of Naples “Federico II”, Naples, 
Italy.

From 2005 to 2008, he worked as a postdoc at the Department of 
Computer Science and Systems, University of Naples “Federico II”, Naples, 
Italy, at the Department of Information Engineering, Second University 
of Naples, Aversa (C E), Italy, and at the Department of Electronics and 
Telecommunications, Norwegian University of Science and Technology, 
Trondheim, Norway.

From 2008 to 2014, he was an Assistant Professor (tenured in 2011) 
in telecommunications at the Department of Industrial and Information 
Engineering, Second University of Naples, Aversa (C E), Italy.

From 2014 to 2016, he was an Associate Professor in signal processing 
with the Department of Electronics and Telecommunications, Norwegian 
University of Science and Technology, Trondheim, Norway.

Since 2016 he is a Full Professor in signal processing with the Depart-
ment of Electronic Systems, Norwegian University of Science and Technol-
ogy, Trondheim, Norway.

He held visiting appointments at the Department of Electrical and 
Computer Engineering, Drexel University, Philadelphia, PA, US, at the De-
partment of Electrical and Information Technology, Lund University, Lund, 
Sweden, at the Department of Electronics and Telecommunications, Nor-
wegian University of Science and Technology, Trondheim, Norway, and at 
the Excellence Center for Wireless Sensor Networks (WISENET), Uppsala 
University, Uppsala, Sweden.

He is an IEEE Senior Member and serves as Senior Editor for the IEEE 
Communications Letters (since 2016) and Associate Editor for the IEEE 
Transactions on Wireless Communications (since 2015). He was Associate 
Editor for the IEEE Communications Letters (from 2012 to 2016).

His research interests fall within the areas of communications and sig-
nal processing.

http://refhub.elsevier.com/S1051-2004(17)30125-2/bib46657272656F6C32303130s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib46657272656F6C32303130s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib46657272656F6C32303130s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4369756F6E7A6F32303134s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4369756F6E7A6F32303134s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4369756F6E7A6F32303134s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4369756F6E7A6F32303135s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4369756F6E7A6F32303135s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib53686932303035s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib53686932303035s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4369756F6E7A6F32303137s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4369756F6E7A6F32303137s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib5368693230303761s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib5368693230303761s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib5368693230303761s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib43686F6931393933s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib43686F6931393933s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4C6931393933s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4C6931393933s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4C6931393933s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib587532303032s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib587532303032s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib587532303032s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib5374657761727431393733s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib5374657761727431393733s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4265726E737465696E32303039s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4265726E737465696E32303039s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4C656531393931s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4C656531393931s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4461767932303039s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4461767932303039s1
http://refhub.elsevier.com/S1051-2004(17)30125-2/bib4461767932303039s1

	On the asymptotic distribution of Time-Reversal MUSIC null spectrum
	1 Introduction
	1.1 Motivation and related works
	1.2 Summary of the main contributions
	1.3 Paper organization and manuscript notation

	2 System model
	2.1 Signal model
	2.2 TR-MUSIC spectrum
	2.3 SVD perturbation review

	3 Null-spectrum analysis
	3.1 General results
	3.2 BA vs. FL scattering models

	4 Numerical results
	5 Concluding remarks
	References


